Limits of Sequential Local Algorithms on the Random k-XORSAT Problem

Kingsley Yung

The Chinese University of Hong Kong

ICALP 2024

Random k-XORSAT

Framework of random constraint satisfaction problem (random CSP)

Random k-XOR Satisfaction Problem (Random k-XORSAT)

- Instance:
 - Variables: *n* Boolean variables $x_1, x_2, \dots, x_n \in \{0, 1\} = \mathbb{F}_2$
 - Constraints: m Boolean linear equations of k variables (In \mathbb{F}_2 , 1+1=0) e.g. $x_1+x_2+x_3=1$
 - Randomness: Each equation is drawn randomly, from all possibilities.
 R.H.S. values are independent of the rest of instance.
- Task:
 - Assign values to variables so that all constraints are satisfied. (called a solution.)
 - **Solution space** = Set of all solutions

Example

• Example:
$$\begin{cases} x_1+x_2+x_3 &=1\\ x_1+x_3+x_4 &=0\\ x_2+x_3+x_5=1 \end{cases}$$
 5 variables 3 constraints $k=3$

- Solving k-XORSAT \equiv Solving a linear system in \mathbb{F}_2 .
- Question: Why interested in some randomly generated linear systems?
- Phase transition (common in random CSPs)

Assumption

- Assume:
- number of equations $m \propto$ number of variables n
- clause density $r = \frac{m}{n}$
- $n \to \infty$

Satisfiability threshold No solution w.h.p. Solutions exist w.h.p. → Clause density $r_{sat}(k)$ r = m/n

- Satisfiability threshold: $r_{sat}(k) = \frac{\lambda_k}{k(1-e^{-\lambda_k})^{k-1}}$, where λ_k is root of $\frac{x(e^x-1)}{e^x-1-x} = k$
- [Dubois and Mandler 2002; Pittel and Sorkin 2016]

ullet w.h.p. = with high probability = with probability converging to 1 as $n o \infty$

Satisfiability threshold No solution w.h.p. Solutions exist w.h.p. Clustering threshold Many well-separated A giant ball w.h.p. small clusters w.h.p. Clause density $r_{sat}(k)$ r = m/n

- Clustering threshold: $r_{clt}(k) = \min_{\lambda>0} \frac{(k-1)!\lambda}{(1-e^{-\lambda})^{k-1}}$
- [Ibrahimi, et al 2012; Achlioptas and Molloy 2015]

- Common in many random CSPs
- e.g. random k-SAT, random graph coloring, random hypergraph 2-coloring

Algorithmic threshold

- Those random CSPs: We have poly-time algos to find solutions, with probability \rightarrow 0.
- Only work, when density < clustering threshold

Algorithmic threshold

- Those random CSPs: Statistical-to-computational gap
- Question: Clustering phenomenon is related to average-case hardness?

- Random k-XORSAT: We have Gaussian elimination to solve it in $O(n^3)$
- No such gap

- ullet Poly-time = Efficient ullet Linear-time = Efficient
- Gaussian elimination in $O(n^3)$

Algorithmic threshold

- **Best linear-time algo**: works only for $r < r_{clt}(k)$. [Ibrahimi, et al 2012]
- Statistical-to-computational gap (linear-time version).

Algorithmic threshold

- In this paper, we try to justify the existence of the gap.
- Rule out a natural class of algorithm, from the gap

Our paper

• Sequential Local Algorithms fails to solve random k-XORSAT w.h.p. for density $r_{clt}(k) < r < r_{sat}(k)$ (i.e. in the statistical-to-computational gap).

Sequential local algorithms: Factor graphs

- Graph representation of instances:
 - Variable \rightarrow Variable node \bigcirc
 - Equation \rightarrow Equation node \square
 - ullet Connect equation nodes igcup to variable nodes igcup

- **Distance** between 2 nodes = # edges in the shortest path
- **Local neighborhood** of a variable node, of radius *R*:
 - Subgraph induced by all nodes of distance $\leq R$ from the node

Sequential Local Algorithms: The algorithm

- **Equip:** Heuristic (called **local rule** τ), postive number R > 0
- **Remark 1:** Implementation depends on the choices of τ . It is a class of algorithms.
- Remark 2: If local rule τ takes constant time, then algorithm DEC $_{\tau}$ takes linear time.

Algorithm Sequential Local Algorithms DEC_{τ}

- 1: repeat
- 2: Pick an unassigned variable randomly, say x_i .
- 3: τ (Local neighborhood of x_i of radius R) $\rightarrow p \in [0,1]$
- 4: Assign:
 - 1 to x_i with probability p
 - 0 to x_i with probability 1-p
- 5: Update instance.
- 6: until Every variable has an assigned value.

Main result

Theorem 1

• For $k \geq 3$ and $r_{clt}(k) < r < r_{sat}(k)$, (i.e. density \in statistical-to-computational gap.) given a sequential local algorithm DEC_{τ} , with a local rule τ , if $p = \frac{1}{2}$ for $> 2\mu(k,r)$ iterations w.h.p., where

$$\mu(k,r)=\exp(-krQ^{k-1})+krQ^{k-1}\exp(-krQ^{k-1}) \text{ and } Q \text{ is the largest solution of } Q=1-\exp(-krQ^{k-1}),$$

- then the algorithm fails to solve random *k*-XORSAT instance w.h.p.
- The condition is satisfied by some choices of local rules.
- Theorem 2: Same result when using Unit Clause Propagation as local rule, for $k \ge 9$.
- Theorem 3: Same result when using Belief/Survey Propagation as local rule, for $k \ge 13$.

Proof Technique

- Technique: Based on Overlap Gap Property OGP (first used by [Gamarnik, Sudan 2017])
- Alternative way to describe clustering.
- An instance exhibits OGP if
 - there exists $0 < v_1 < v_2$ s.t.
 - distance between **every pair of solutions** are either $d(\sigma_1, \sigma_2) \leq v_1$ or $d(\sigma_1, \sigma_2) \geq v_2$. (close to each other) or (far from each other).
- OGP ⇒ Clustering (Converse has not yet confirmed.)
- OGP ⇒ Rule out some algorithms. (Average-case hardness)
- Only know random k-XORSAT exhibits OGP for high density.
- Can't cover whole statistical-to-computational gap.
- OGP of sub-instance, instead of entire instance

OGP of sub-instance

- Proof of clustering of random k-XORSAT [Ibrahimi, et al 2012; Achlioptas, Molloy 2015]:
 ∃ sub-instance (called core instance) that exhibits OGP w.h.p.
- Obtained by:

Repeatedly removing variables involving ≤ 1 equation and the involved equation.

- OGP of core instance + Modify OGP proof technique ⇒ Our result
- Link clustering phenomenon and average-case hardness together.

Open Problems

- Theorem 2: Same result when using Unit Clause Propagation as local rule, for $k \geq 9$.
- Theorem 3: Same result when using Belief/Survey Propagation as local rule, for $k \ge 13$.
- Extend to lower k, by improving some calculation.
- Question: Can we apply the proof on other random CSPs?
- Core instance of random k-SAT X
- Good news: Same technique also works for other type of sub-instances with OGP.
- Thank you!