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Random k-XORSAT

Framework of random constraint satisfaction problem (random CSP)

Random k-XOR Satisfaction Problem (Random k-XORSAT)

Instance:

Variables: n Boolean variables x1, x2, . . . , xn ∈ {0, 1} = F2

Constraints: m Boolean linear equations of k variables (In F2, 1 + 1 = 0)
e.g. x1 + x2 + x3 = 1

Randomness: Each equation is drawn randomly, from all possibilities.
R.H.S. values are independent of the rest of instance.

Task:

Assign values to variables so that all constraints are satisfied. (called a solution.)
Solution space = Set of all solutions
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Example

Example:


x1 + x2 + x3 = 1
x1 + x3 + x4 = 0

x2 + x3 + x5 = 1
with

5 variables
3 constraints
k = 3

Solving k-XORSAT ≡ Solving a linear system in F2.

Question: Why interested in some randomly generated linear systems?

Phase transition (common in random CSPs)
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Assumption

Assume:

number of equations m ∝ number of variables n

clause density r = m
n

n → ∞
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gapGaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n
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Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gapGaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Satisfiability threshold: rsat(k) =
λk

k(1−e−λk )k−1 , where λk is root of x(ex−1)
ex−1−x = k

[Dubois and Mandler 2002; Pittel and Sorkin 2016]
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gapGaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

w.h.p. = with high probability = with probability converging to 1 as n → ∞
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gapGaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Clustering threshold: rclt(k) = minλ>0
(k−1)!λ

(1−e−λ)k−1

[Ibrahimi, et al 2012; Achlioptas and Molloy 2015]
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gapGaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Common in many random CSPs

e.g. random k-SAT, random graph coloring, random hypergraph 2-coloring
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gapGaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Those random CSPs: We have poly-time algos to find solutions, with probability ↛ 0.

Only work, when density < clustering threshold
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gap

Gaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Those random CSPs: Statistical-to-computational gap

Question: Clustering phenomenon is related to average-case hardness?
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gap

Gaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Random k-XORSAT: We have Gaussian elimination to solve it in O(n3)

No such gap
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gap

Gaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Poly-time = Efficient → Linear-time = Efficient

Gaussian elimination in O(n3)

Kingsley Yung Sequential Local Algorithms on Random k-XORSAT ICALP 2024 5 / 12



Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gap

Gaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

Best linear-time algo: works only for r < rclt(k). [Ibrahimi, et al 2012]

Statistical-to-computational gap (linear-time version).
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Satisfiability threshold

rsat(k)

Solutions exist w.h.p. No solution w.h.p.

Many well-separated
small clusters w.h.p.

Clustering threshold

A giant ball w.h.p.

rclt(k)

Algorithmic threshold

ralg (k)

∃ poly-time algos No poly-time algo
is known.

Statistical-to-
computational gap

Gaussian elimination in O(n3)

ralg (k)

∃ linear-time algos No linear-time algo
is known.

Clause density
r = m/n

In this paper, we try to justify the existence of the gap.

Rule out a natural class of algorithm, from the gap
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Our paper

Sequential Local Algorithms fails to solve random k-XORSAT w.h.p.

for density rclt(k) < r < rsat(k) (i.e. in the statistical-to-computational gap).
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Sequential local algorithms: Factor graphs

Graph representation of instances:
Variable → Variable node ⃝
Equation → Equation node □
Connect equation nodes ⃝ to variable nodes □

x1

x2

x3

x4

x5

e1

e2

e3

x1 + x2 + x3 = 1

x1 + x3 + x4 = 0

x2 + x3 + x5 = 1

Distance between 2 nodes = # edges in the shortest path
Local neighborhood of a variable node, of radius R:

Subgraph induced by all nodes of distance ≤ R from the node
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Sequential Local Algorithms: The algorithm

Equip: Heuristic (called local rule τ), postive number R > 0

Remark 1: Implementation depends on the choices of τ . It is a class of algorithms.

Remark 2: If local rule τ takes constant time, then algorithm DECτ takes linear time.

Algorithm Sequential Local Algorithms DECτ
1: repeat
2: Pick an unassigned variable randomly, say xi .
3: τ( Local neighborhood of xi of radius R ) → p ∈ [0, 1]
4: Assign:

1 to xi with probability p
0 to xi with probability 1−p

5: Update instance.
6: until Every variable has an assigned value.
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Main result

Theorem 1

For k ≥ 3 and rclt(k) < r < rsat(k), (i.e. density ∈ statistical-to-computational gap.)

given a sequential local algorithm DECτ , with a local rule τ ,

if p = 1
2 for > 2µ(k , r) iterations w.h.p., where

µ(k, r) = exp(−krQk−1) + krQk−1 exp(−krQk−1) and
Q is the largest solution of Q = 1− exp(−krQk−1),

then the algorithm fails to solve random k-XORSAT instance w.h.p.

The condition is satisfied by some choices of local rules.

Theorem 2: Same result when using Unit Clause Propagation as local rule, for k ≥ 9.

Theorem 3: Same result when using Belief/Survey Propagation as local rule, for k ≥ 13.
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Proof Technique

Technique: Based on Overlap Gap Property OGP (first used by [Gamarnik, Sudan 2017])

Alternative way to describe clustering.

An instance exhibits OGP if

there exists 0 ≤ v1 < v2 s.t.
distance between every pair of solutions are
either d(σ1, σ2) ≤ v1 or d(σ1, σ2) ≥ v2.

(close to each other) or (far from each other).

OGP ⇒ Clustering (Converse has not yet confirmed.)

OGP ⇒ Rule out some algorithms. (Average-case hardness)

Only know random k-XORSAT exhibits OGP for high density.

Can’t cover whole statistical-to-computational gap.

OGP of sub-instance, instead of entire instance
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OGP of sub-instance

Proof of clustering of random k-XORSAT [Ibrahimi, et al 2012; Achlioptas, Molloy 2015]:

∃ sub-instance (called core instance) that exhibits OGP w.h.p.

Obtained by:

Repeatedly removing variables involving ≤ 1 equation and the involved equation.

e1 x1

e2 x2

Core instance

OGP of core instance + Modify OGP proof technique ⇒ Our result

Link clustering phenomenon and average-case hardness together.
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Open Problems

Theorem 2: Same result when using Unit Clause Propagation as local rule, for k ≥ 9.

Theorem 3: Same result when using Belief/Survey Propagation as local rule, for k ≥ 13.

Extend to lower k, by improving some calculation.

Question: Can we apply the proof on other random CSPs?

Core instance of random k-SAT ✗

Good news: Same technique also works for other type of sub-instances with OGP.

Thank you!
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